
Splitting Bits of a Modbus Holding Register into Multiple 

Objects 

 

Modbus is notorious for packing a whole bunch of things in a single holding register, especially 

when a collection of status bits are just one bit each. When converting those status bits to some 

other protocol, especially BACnet, it is user unfriendly, if not downright non-functional, to put 

that collection in an Analog Input object. Thankfully, Babel Buster gateways can split a single 

holding register full of status bits into a collection of individual Binary objects for BACnet, or 

just split them into multiple Modbus registers or variables for other protocols. The concept works 

the same for all Babel Buster gateways that talk Modbus, but we will illustrate BACnet here. 

The key to splitting a packed holding register into 16 different objects is to set up rules or maps 

that look like you are reading the same register 16 times. Internally, the Babel Buster optimizes 

the query. It sees you are reading the same register over and over, and does an actual read only 

once and then shares the data with all 16 rules or object maps. Each time, the original Modbus 

data is processed according to the rule’s criteria, and the result is placed in the given target 

object. 

Each of the read rules or object maps are set up the same as you would for reading any other 

unsigned 16-bit holding register. The only parameter you need to set differently is to put a non-

zero value in the “mask” field. Any time the BB2-7010 (or other web enabled version of 

gateway) sees a non-zero mask value, it automatically treats it as a packed register. On the BB2-

3010 (or other non-web gateways), you also need to check the box that says “Member of Packed 

Register” in the configuration tool software. 

The web enabled gateways require that you place all related read (or write) rules in consecutive 

order in the rule list in order for all parts of the packed register to get accumulated. If the rules 

are not contiguous in the rule table, you will end up with multiple reads - which won’t hurt 

anything. But if write rules are scattered about, you will end up with multiple writes and the last 

write will overwrite the first writes, most likely creating results you did not intend. 

The non-web gateways use a different approach to the mapping, and will go looking for other 

objects if an object is marked as “Member of packed register”. If the members of the packed 

register are not the same object type, you also need to check the box marked “Pack Mixed Object 

Types” so that it also searches all other object types looking for members of the same Modbus 

register. 

When either the web or non-web gateway starts searching for members of the same register, the 

register type, register number, and device address must all match. Any non-match ends the 

search in the web gateway, or is simply skipped over in the non-web gateway. 

The same masking tricks can be used to write a packed Modbus holding register. There is one 

additional parameter that can be useful when writing, namely the “fill” parameter. If the register 



contains a bit that should always be set no matter what, you use the same values that you would 

for mask, except put them in the “fill” window instead. Just like the “mask” is logically AND-ed 

with the data, the “fill” is logically OR-ed with the data before sending it out to the Modbus 

device. 

Documentation tends to be slightly different for every Modbus device. But if your device packs 

multiple bits into a single holding register, the documentation will note up to 16 different items 

found at the same register number or address. The bits may be identified with “Bn” or “Dn” or 

just “bit n”. Most of the time, the least significant bit will be called bit 0 and the most significant 

will be bit 15. It is possible you could find reference to bit 1 through bit 16, in which case just 

subtract one from the number to reference the table below. For each of the 16 bit positions, the 

mask (or fill) will be as follows. 

B0/D0/bit 0 mask = 0001 

B1/D1/bit 1 mask = 0002 

B2/D2/bit 2 mask = 0004 

B3/D3/bit 3 mask = 0008 

B4/D4/bit 4 mask = 0010 

B5/D5/bit 5 mask = 0020 

B6/D6/bit 6 mask = 0040 

B7/D7/bit 7 mask = 0080 

B8/D8/bit 8 mask = 0100 

B9/D9/bit 9 mask = 0200 

B10/D10/bit 10 mask = 0400 

B11/D11/bit 11 mask = 0800 

B12/D12/bit 12 mask = 1000 

B13/D13/bit 13 mask = 2000 

B14/D14/bit 14 mask = 4000 

B15/D15/bit 15 mask = 8000 

Some Modbus devices also back two 8-bit values into a single 16-bit register. The two values 

will typically be documented as “high byte” and “low byte” or simply have “H” and “L” 

indicated. If you run into this scenario, the masking for bytes is as follows: 

High byte mask = FF00 

Low byte mask = 00FF 

The web page for setting up a Read Rule in the BB2-7010 is illustrated below. This screen shot 

happens to be for Modbus RTU, but set for Modbus TCP is very similar. When you first get to 

the Read Map page, it will be a tabular list of rules. To get to this page showing the expanded list 

of all possible configuration parameters, click on the map number in the first column of the list 

of rules. 



 

The non-web gateways like BB2-3010 have configuration tool software that you can download 

from the product support page for the particular model of interest. There is no charge for this 

software, but you do need the MTX002 USB to BACnet adapter for non-web BACnet gateways. 

The object map configuration page in this tool software for the BB2-3010 is illustrated below. 

Rather than the list of rules as found in the BB2-7010, the BB2-3010 has a map associated with 

each available object. Each local object in the gateway can be mapped to Modbus RTU or 

BACnet MS/TP in the BB2-3010. Mapping BACnet Binary Input object to a single bit found in a 

Modbus RTU holding register is illustrated below. 



 

 

 

Article ID: 17 

Created On: Wed, May 20, 2015 at 1:50 PM 

Last Updated On: Wed, May 20, 2015 at 2:04 PM 

 


