Writing Modbus Passwords from Babel Buster SPX, BB2-
6010, or Modbus Gateways In General

How to write a Modbus password using Babel Buster SPX (or BB2-6010)

There is sometimes a requirement to write a “password’ or some sort of unlock code to a Modbus
device. This unlocking usually requires writing a series of registers in one single request,
generally with function code 16. The Babel Buster SPX includes the options necessary to
accomplish this. While the SPX is illustrated here, the examples are applicable the Babel Buster
BB2-6010 and most Control Solutions products with Modbus gateway capability.

First, determine the number of registers you will need to write. If the Modbus device talks about
a "16-character” password, that means 8 registers with 2 characters per register. In the example
that follows, we are assuming a 16-character password. This means we need to define 8
consecutive write maps. We will illustrate RTU, but the same principle applies to TCP.

ConTRrOL SorLuTIons, INc.
MINNESOTA

IP Network System

Write local registers out to remote registars, This page creates a map entry that writes data to one or more remote Modbus RTU serial
devices from data contained here. Click on map number to see more detail and inserydelete rules.

showing |1 to 3 of 9 Update < Prew INext »
[koo [Update | | | |

Rermote Lernote Remote
Fegist (= A= i Unit #

Integer

Mame

| | |
2l |2 | 0000000 | [Holding Register | |Integer | |2 | [1 | |Passwordword 2 |
N E | 0000000 | [Haolding Register | |Integer | |3 | E | |PasswordWord 3 |
4 |4 | 0000000 | |Holding Register % [Integer +| |4 || B | |Password'word 4 |
s 5 | 0.000000 | [Holding Register | [Integer ~| |5 | 1| [Posswordwords !
s |6 | 0000000 | |Holding Register ¥ |Integer v| |6 | B | |PasswordWord 6 |
B | 0.000000 | |Haolding Register ¥| |Integer v| |7 | | | |Password'word 7 |
e |3 | 0000000 | |Holding Register % |Integer %| |8 || LE | |Password'word 8 |
20| (0000 | [Nore B (e B 1] |

You can enter almost everything you will need from the map list page illustrated above. Once
you have created your series of registers, proceed to modify as illustrated in the following screen
shot.

Note: It is important that consecutive registers be defined in consecutive write maps, and that the
next write map following the password is NOT in consecutive order, otherwise more than the
password will be sent in that single request.

The SPX (and all Control Solutions gateways) will attempt to send multiple registers in a single
write request when they are found to be consecutive in the list of write maps.For purposes of
multiple registers per write request, ‘consecutive’ means contiguous in the list of write maps, but
also means the same device or slave address, and consecutively incrementing register numbers.

ONS, INC.
MINNESOTA

System

RTU Witite Map

This page creates a3 map entry that writes data to 2 perrote Modbus RTU serial device from dats contained here,

Map#|1 __| [Update] [< Prev][[ext >]

I 1 I
Read local register # imamed ;PEI.SSWDI’CI Wiord 1 |
[nnnnnn | 0o |
Write remote regist wh local register changes by = | 0.000000 or I:lwhenI 0.0 jseconds have elapsed with no change,
e B e

Otherwise write rernote register unconditionally, applving local register data as follows:

S | Py r—— — T —
Apply scale: |D ooooona |and offset: iIZI naoaon |Then it applicable apply bit mask: |UDUU land bit fill: |UDUD |
Wirite | HD|dIng RBL]ISTBI’ Vl as | |ntl_3_g|?l’__v_lto reglster # 1 | at Unit # E ! with doubles swapped I:l
Repeat thiz process Oat least 0 no more than every D.D seconds,

e e

Client Write Maps Enabled: |9 Inser Delate

The goal is to get a series of 8 registers written in a single request, but only once, and only upon
update of a single Modbus register. Getting the SPX to write only once, and only on demand,
requires setting each of the 8 write maps as illustrated above. Pay attention to the check boxes —
only the box illustrated as checked (ticked) should be checked, and all others should be left off.
Also be sure to select the correct radio button after "Repeat this process”. It should say "no more
than every 0.0 seconds”.

The combination of "changed by 0.0” and "no more than every 0.0 seconds” is a special case that
tells the SPX (or BB2-6010) to only write to Modbus when an update is received via Modbus or

SNMP, and write to Modbus regardless of whether Modbus or SNMP actually changed any
values.

You will need to write the correct password value to at least the first register in the series of

registers that create the password. But the remaining registers can be predefined using the
‘Constant’ Action Rules as illustrated below:

&

ONTROL SOLUTIONS, INcC.
MINNESOTA

RTU Serial Port

Data | Action 8 setup

Constants

This page defines conztants that will be written to the aszigned local registers one tirme at sta-r‘tup.

Showing E1 'to 3 af'9 Update < Praw MNext >
1 [Update | | I]

| BTN

2 1 0000 Irz
2 17734.000000| 3

18248.000000
18762.000000|
2 19276.000000

|

7 19790000000 7
: O

=

] D
|

Rules Enabled: :9

The screen shot above shows a 16-character password set up as default values for a series of
registers (registers 1-8 in this case). These values form the string ‘ABCDEFGHIJKLMNOP’.

The result of writing the value 16706 to register 1 (either via Modbus TCP or SNMP), with the
write maps defined as first illustrated above, will be writing a series of 8 registers to Modbus
using function code 16, illustrated in the following traffic capture on the RTU network:

W Modsim1

The bytes 41, 42, 43, etc, are the hexadecimal values for A, B, C, etc. Since two characters will
be sent per single Modbus register, you must calculate a value the corresponds to two ASCII
characters (assuming the password has been defined as an ASCII string — otherwise use whatever
code you are instructed to use by the Modbus device manufacturer).

The letters AB are hexadecimal values 41 and 42. The first character will be in the high order
byte. This means the concatenated value will be hex 4142 (or represented often as 0x4142 or
4142H). Now convert this to decimal using a hex to decimal calculator (or use your PC’s
calculator, enter in hex, and switch to decimal). The decimal number is 16706.

You can also calculate character codes in decimal. The letter A is decimal 65, and B is 66. To
calculate the 16-bit value to write via the Modbus register, you would multiply the first character
times 256, then add the second character as follows:

(65 * 256) + 66 = 16706
You can find ASCII code charts by simply doing a web search for "ASCII”, or go to

http://en.wikipedia.org/wiki/ASCII where you will find information including the following
chart:

Binary Oct Dec Hex Glyph Binary Dm.Dec Hex Glyph Binary Oct Dec Hex Glyph
040 11000000100 B4 | 40 | |
' 1100 0001
' 100 0010 102
| 103
1000100 104
1000101
1000110 108

010 D000 040
010 0001 041
010 0010 042

010 0011 043

010 0100 044
010 0101 045
0100110 046
0100111 047
010 1000 050

010 1001 051

010 1010 052
010 1011 053
010 1100 054

010 1101 055

010 1110 056

010 1111 067

011 0000 060
011 0001 061

011 0010 062

011 0011 063

011 0100 064
011 0101 085

011 0110 066
011 0111 067

011 1000 070

011 1001 071
011 1010 072

011 1011 073

011 1100 074
011 1101 075
011 1110 076
011 1111 077

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

20

21
22

23

24

2

26

27 |
28
29

2A

2B

2C
2D
2E

| oF
30
31

32
=3
34

35

36

37

38
39

.BA.
3B

3c

3D

3E
3F

14

- | | e

O DI~ D) | = WM

100 1000

1100 1010
100 1011
' 100 1100
100 101
100 1110
1100 1111
' 1101 0000 120
101 0001
1010010 122
101 0011
1010100 124
101 0101
101 0110126
1010111 127
101 1000 130

101
100 0011
105
100 0111 107
100 1001 111
112
13
115
116

121

123

101 1001 131

1011010 132
| o
101 1100 134
101 1101
101 1110 138
101 1111

101 1011

137

110

114

17

125

_135.

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

40

41

1|
43

44

45
46

47

5
49

44

4B |

AC

4D
AE
4F

50

51
52

53

.54_
55

56

57
58

59

5A
5B

5C

5D |

bE

5F |

@

T @M Mmool X

<X k|2 <L|lc|ld||n|Q|D|O|Z[([Z|r|X|=]|—

— o — | ey

110 1100

-11[]1111

111 0001

1110100
110101

111 1000
111 1010

111 1011

11 1110

110 0000 140
110 0001 141

1100010 142

110 0011 143
110 0100 144

110 0101 145

1100110 148
100111 147
110 1000 150
110 1001 151
110 1010 152
1101011 153
154
155
156
157

10 1101
110 1110

111 0000
111 0010

111 0011

1110110
111 011

111 1001

111 1100
11 1101

96
a7
95
99
100
101
102
103
104

105

106

107 |

108
109

110

111

12

13
114
115

16 |
17

18
19

120

121
122
123
124
125
126

60

AR EIEIEERE

ket () S L IO o i R O e IO T T N N Y S N S (R ™ (R A0 p S s e 3 I T 8 e 7
M| & |0 || =] 0| oy | & | |k =T m | O Sm| |

S

o | O o | D

—_

|

Article ID: 1
Created On: Thu, Dec 6, 2012 at 10:58 PM
Last Updated On: Wed, May 20, 2015 at 2:06 PM

